Submovement overlap as a measure of movement smoothness
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Abstract. Many measures have been employed to quantify an aspect of heaitlegd snovement, which
has been termed “movement smoothness” of which jerk is the most oarrivie propose a new, biologically-
motivated quantification of “movement smoothness”: submovemesrtayy.

In previous work, changes in submovements have been linked to ehamgnovement smoothness. Further
investigation revealed that in stroke patients, submovements consistemtltotgrow closer over the course
of recovery. While jerk analysis showed some patients’ movementsiggosignificantly less smooth, sub-
movement blending provided a remarkably consistent metric of regodespite wide variations in subject
age, lesion territory, and stroke severity.

In stroke patients, it is not average jerk but submovement blendingrtbaningfully quantifies the movement
smoothing that accompanies recovery. The strength and consistéhayhich it quantified patients’ recovery
indicates that analysis of submovement overlap may be a useful tankasuring learning or other changes in
motor behavior in future human movement studies.

1. Introduction

Quantification of movement smoothness has been pursuedrfoméer of reasons. It has been investigated as
an indicator of motor skill and coordination (Platz et al994) and as an objective measure of recovery from
neurological injury (Trombly, 1993; Cirstea & Levin, 200Rahn et al., 2001; Rohrer et al., 2002). Smoothness
has been used to identify pre-symptomatic individuals Witimtington’s disease (Smith et al., 2000) and has also
been shown to account for the two-thirds power law, widelysidered an invariant in human movement (Wann
et al., 1988; Gribble & Ostry, 1996; Todorov & Jordan, 1998h&al & Sternad, 2001).

Many measures of movement smoothness have been used héettiird time derivative of position, is the
most common of such measures (Flash & Hogan, 1985), butstheude snap, the derivative of jerk (Edelman
& Flash, 1987), and counting peaks in tangential velocityo(is, 1973; Fetters & Todd, 1987).

In simulations of movement made in the presence of signaéident noise, Harris and Wolpert (1998)
showed that smooth point-to-point movements minimize eimdperror. While smoothness is a characteristic
of healthy, mature human movement, the earliest movemeaterby infants (Hofsten, 1991) and by patients
recovering from stroke (Krebs et al., 1998) are strikinghattthey initiallylack smoothness but become more
smooth with time. Any comprehensive model of movement petida must describe not only the smoothness
of movement, but also its hon-smoothness during developaugsh neurological recovery. This prompted our
work in quantifying movement smoothness as a measure destezovery, using both a jerk-based measure and
submovement overlap.

2. Smoothness aslow jerk

Thirty one patients of various ages, levels of impairmentd &mes post-stroke participated in therapy using
rehabilitation robots, MIT-MANUS and InMotion2. A key clateristic of both robots is their backdrivability,
that is, their ability to get out of the way when pushed by gesttb Thus, subjects’ movements were minimally
obscured by the dynamics of the robots. All movements dgalidiere were point-to-point movements, made
while the robots were unpowered and hence acting only asvpas&asurement devices that restricted patients
hand motion to a horizontal plane.

A jerk-based smoothness measures was used to analyzetgatiewrements. Qualitative observations of
patients’ movements growing smoother were not all refleatetthe jerk-based measure did not. Rather, jerk-
based smoothness significantigcreased in 10 of the 31 patients. This, despite the fact that all 1Gepés had
experienced recent strokes and therefore constitutedojinélation expected to improve at the highest rate. These
results are presented in their entirety in (Rohrer et aD220
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Figure 1. Simulated vs. actual speed profiles. a)-d) Progressive blending of two minimum-jerk curves at
various states of blending (T). e)-h) Actual subject speed profiles. e) and f) are taken from the first and last
therapy sessions of a subject with a recent stroke and g) and h) are taken from the first and last therapy
sessions of an subject with a stroke of more than one year prior. Simulated speed profiles qualitatively
resemble the actual subject data. a) contains two distinct speed peaks, just as the subject speed profile e).
Continuing down the columns, b) and f) are qualitatively similar, c) somewhat resembles g), and d) is similar to
h). Progression from the first to the last therapy sessions qualitatively suggests an increase in submovement
blending. Also, the movements of the subject that is longer post-stroke have characteristics of more highly
blended submovements, compared to those of the subject with a more recent stroke. j) Fluctuation of a jerk-
based smoothness metric during the simulated blending of two simulated submovements. The values of the
jerk metric are shown for a range of values of T. Translation to the left along the x-axis represents an increase
in submovement blending. Translation up the y-axis represents an increase in jerk-based smoothness. Speed
profiles for selected values of T are shown along the horizontal axis, depicting the state of the simulation at
various degrees of blending. During submovement blending, the jerk metric first shows the movement growing
less smooth before it begins to grow more smooth. Reproduced in part from (Rohrer et al., 2002).

3. Smoothness as over lapped submovements

We also applied a novel smoothness measure to the data: sebrant overlap. Submovements are hypothesized,
discrete elements of human movement. Observations of slovements (Vallbo & Wessberg, 1993), eye sac-
cades (Collewijn et al., 1988), cyclical movements (Woodtv01899; Crossman & Goodeve, 1983; Doeringer,
1999), ballistic movements (Morasso, 1981), and movenresiring a high degree of accuracy (Milner, 1992)
all support the existence of submovements. Complex moventeve been decomposed into submovements as
an analysis tool (Morasso & Mussa-Ivaldi, 1982; Flash & Keii991; Berthier, 1996; Burdet & Milner, 1998;
Rohrer & Hogan, 2003) with apparent success.

The observation of Krebs et al. (1998) that movements madeabignts recovering from stroke become
smoother with recovery was originally attributed to a pesgive overlapping and blending of submovements,
though only isolated examples of submovement blending wegrerted. Further motivation for this analysis was
provided by the data presented in (Rohrer et al., 2002), glksaaf which is shown in Figure la-h. These data
illustrate how the typical changes in patient speed pro@iles the course of recovery closely match the changes
observed in a submovement-based model of recovery.

In order to determine the role of submovements in movemenbtimess,we performed a second analysis
on the stroke recovery data, applying a novel submoveméraation algorithm (Rohrer et al., 2003). Movements
from the first and last days of therapy are shown in Figure @ettzer with their extracted submovements. The
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Figure 2. Movements, with their extracted submovements, from the first and last days of therapy for a single
patient. The pattern observed is typical: submovements grow higher in peak speed, longer in duration, fewer
in number, and more overlapped. Reproduced from (Rohrer et al., 2004).

pattern displayed is typical: submovements grew higherekpspeed, longer in duration, fewer in number, and
more overlapped. Of these trends, the increase in overlagh stimngly influences the resulting smoothness of
movement. This analysis showed that in stroke patientsneubments consistently tended to grow closer over the
course of recovery; no patient’'s movements grew signiflgdess smooth, as measured by submovement overlap.

4. Discussion

The differences between jerk-based smoothness and submaovélending-based smoothness can be seen in
Figure 1j, which displays the jerk-based smoothness caledlduring simulated submovement blending. As
the two submovements draw closer together, the jerk-basadune reports that the overall movement grimss
smooth. This trend reverses after the two submovementsii@ently blended{" < 0.25s) and the two measures
begin to agree. This provides an explanation for the resfilise jerk-based smoothness analysis reported earlier:
the patients for which it reported movements growing leseatmwere also the patients with the least amount
of submovement overlap, patients with recent strokes. Trhelation correctly predicts that, as these patients’
submovements blended together, the jerk-based measute intarpret the movement as becoming less smooth.

In this analysis, jerk does not accurately reflect the irm@ean smoothness observed during the recovery
process. There are other possible jerk-based smoothnéssanef course. The fact that this particular metric did
not perform well in this application does not indicate thnare is no value in jerk-based smoothness measurement.
However, it does suggest caution when measuring smoothvigsgerk, as it can be misleading.

Recent work has shown that signal-dependent noise prowidéslogically-grounded explanation for the
ubiquitous observation that smoothness in the minimukgense accurately describes coordinated movement (Har-
ris & Wolpert, 1998). However, we show here that recoveryrfistroke has more “fine structure”, well-described
by submovements. Whether a process like signal-dependiset mooptimal feedback control (Todorov & Jordan,
2002) can give rise to observed submovement behavior renalre seen.

The counter-intuitive behavior of the jerk metric suggehbt, at least during post-stroke recovery, jerk-
minimization may not be the primary criterion governingmefnents in movement patterns. Submovement over-
lap, however, captures qualitative observations of moveroleanges and provides a robust quantitative measure
of the recovery process.
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